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advanced photon source

Topics

1. Mathematical Tools

2. Electromagnetic (Maxwell’s Equations, Boundary
Conditions, Time varying Fields, Wave propagation).

3. Plane Wawves, Electromagnetic Energy and Poynting’s
Theorem.

4. Transmission Lines and Waveguides.

5. Microwave Network Analysis (Impedance and Equivalent
Voltages and Currents, Scattering Matrix,Signal Flow,
Waveguide Excitation).
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Topics

6. Microwave Resonators,CKT Design, RF Cavities.
7. Power Sources,Power Dividers and Directional Couplers.

8. RF systems for Accelerators, Linear Structures, Storage Ring
Cavities.

9. Beam-Cavity Interaction, Beamloading, HOMs and Mode
Damping , Wakefields, Longitudinal Effects.

10. Special Topic and Review.

RF and Microwave Physics Fall 2002 ANL



advanced photon source

—h
°

N o v oA w N

Mathematical Tools

Vector Analysis
Calculus

Matrices

Complex Numbers
DE/PDE

Fourier Series

Bessel and Green’s Functions
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Vectors

A (Euclidean) vector is an object which
1. Is added to other vector using the “Parallelogram rule”

2. Has a magnitude and direction

A

!

wof
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Vectors

Algebraically, 2 + E — E + ;i

Vector addition is also associative, |.e., when adding three (or more)
vectors together we can “add the vector-sum of the first two to the third”
or “add the first to the vector-sum of the last two.”

Algebraically, (4+ B)+C = A+(B+C)

ool

@Y

(A+B)+C

A+(B+C)
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Vectors

Vectors can also be scaled by multiplying them with numbers (called
scalars. This is referred to as scalar-multiplication.

Examples: A — 4 2 A \"\
Scalar-multiplication is distributive: (K + l)g — 1A + 14
2B K(ﬂ+1§)=l{2+ld§

2(A+B)=2A4+2B
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Vectors

Dot-Product: Given two vectorsgl and E , their dot-product is a
multiplication rule which returns a scalar quantity. The rule is

A-B= ‘;1 HEHCOSH
B :
VO
i Bcos@

Bcos 6 s the projection of E along the direction of 4

RF and Microwave Physics Fall 2002 ANL



advanced photon source

Useful Facts ...

* A-A=Adcos0=4", |4|=+4-4
°lf  4.B=AB (cosf=1) .then A and B are parallel.

‘f  A-B=—-AB (cosd =-1) ‘then 4 and B are anti-
parallel.

 If A-B=0 (cos@=0) | then 4 and B are

orthogonal.

Magnitude of vector-sum 2_|_B

|4+B =(4+B)-(4+B)
=(A- A)+(A-B)+(B- A)+(B- B)
=4 +2c4- B+ |8
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Useful Facts ...

This is essentially the Law of Cosines

i1/ A+B c _—
B c b/
180—-6
cosC =cos(180—68)=—cosf
$0,2(A- B) =2abcosOd =—-2abcosC
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Useful Facts ...

f 4-B=0,ie.,if cosd=0(vectors are L) . then
g =

This is the Pythagorean Theorem where zandB are the legs of a
right-triangle.

o)
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Useful Facts ...

it A4-B=AB, (vectors are parallel)

—

|4+ 8] <[4l + 248+ B[

= A +2(AB)+ B”
=(A+ B)(A+ B)

2

— 112 —
= (4] + ]3]

> |4+ B|= |4+ |5]
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Vector operations

1.  Addition (components)

Lets define two vectors, ;1 and B as follow:

A=au, +a,u, (i
B=bu,+b,u,
o\ al A az

ul :__ 9”2 p— —
‘“l H%H

l,uz) , are unit vectors,
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Vector operations

Define the vector sum:
C=A+B
C =ci +c,i,
= (a,u, + ayu,) + (bu, +byu,)
=(a, +b)u, +(a, +b,)u,
c,=a,+b, c,=a,+b,

C-C= (Clﬁl + 02122) ' (Clﬁl + 62122)
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advanced photon source .
Vector operations

A\

u u, =u,-u, =1, u-u,=u, -u =0

u -u, u, u,

2 2
€l = e

_ 2 2
<l =vle] +ea
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Vector operations

Dot Product:

_—

Considertwovectors 4and B : A-B=ABcosf
In terms of components; A - E — AXBX + AyBy

To see this use:

cos(@ 4 —0p) = cosl 4 cosbg +sinb 4 sinbp
Y so A-B= ABcos6 (note:0 4 =0p +0)
= ABcos(@ 4 —0p)

= AB(cosb 4 cosfp +sinb 4sinbp)

=(Acosl 4)(BcosOp)+(Asmnb 4)(Bsinbpg)

Bcodp é
RF and Microwave Physics Fall 2002 ANL



advanced photon source
\Vectors

;= a x b with magnitude |v| = |a||p|sin
i =aj.ar.a3].b =|by.by.by Jand angle y betwen a and b.

Direction of v =a x b is L to both @ and b.

VIC?XBZ [V1,V2,V3]

~.}
=

<)
Il

al a2 a3 s 2D V1 = a2b3 — a3b2,V2 = —(a1b3 — a3bl),V3 = a1b2 — Clzbl
by by b3

Vv
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Vector Products

e Properties:
(lEl X 15): z(‘ X 5): a x (115), (for every scalar 1)
ax(Bxe)=(axb)+(@xe) (distibutive w.rt addition)

=(axc)+(bxe) (distribut ive w.rt addition)

X
) (anticommu tative)
ad X

b )x ¢, (not associativ e, in general)
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Vectors

Cartesian components of vectors

Let {e, e, e;} be three mutually perpendicular unit vectors which form a

right handed triad. Then {e, e, e;} are said to form an orthonormal basis.
The vectors satisfy:

e1] = leof =les| =1

€] X€y =€3,€] Xe3 = 69,6y X3 =€
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Vectors

We may express any vector a as a suitable combination of the unit
vectors {e, e, e;}. For example, we may write

3
a=ae;+ame, +aze3 = ) ase;
=
where {611,612,613} are scalars, called the components of a in the basis

{e, e, ez }. The components of a have a simple physical interpretation.
For example, if we calculate the dot product a. e,, we find that

a-ep = (61161 +a2€2 +Cl3€3)°€1 = a

Recall that d- €1 = \aHel ‘ COS 9(61 ° el)

a; =a-e; =ldcosb(a-e))
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Vectors

Thus, dp represent the projected length of the vector a in the direction
of e,. This similarly applies to 49 ,d3

Change of basis

Let a be a vector and let {e, e, e;} be a Cartesian basis. Suppose that
the components of a in the basis {e, e, e;} are known to be {ay,a,,a3}

Now, suppose that we wish to compute the components of a in a second
Cartesian basis, {r, r, r;}. This means we wish to find components

la1,00,a3}  such that A =041 T 0P +ORY3 to do so, note that
oy =a-n=uaye-n+orer-n +0[3€3 "N
O =A1) =Q1€1 "1 TArey 1N +0[3€3 %)

O3 =ad-r3 =€) -1 -|-0[2€2 13 +0[3€3 13
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Vectors

This transformation is conveniently written as a matrix operation

a =[0]a]
where [a] IS @ matrix consisting of the components of a in the basis
{ryr, r3}, [a] IS a matrix consisting of the components of a in the basis

{611,612,613} . and [Q] is a “rotation matrix” as follows

_051_ _al_ _’”1'61 n-e ’”1'63_
la|=|ay | lal=|ay |[Ol=|rr-¢ r-ey 1€
@3 B gl ey ey

Using index notation O‘i — Ql]a]’ Qlj — rl . ej
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Time Derivatives of Vectors

Let a(t) be a vector whose magnitude and direction vary with time, t.
Suppose that {l,j,k} is a fixed basis. We may express a(t) in terms of
components (a, ,a, ,a,) in the basis {l,j,k} as a(f)= a, i+ a j+ a, k. The time
derivative of a is

i(r) = ia(t) — bm a(t+¢&)—al(t)
dt e—0 &

a(t)=a,i+ a,Jj+ a,k

;’t [a0)-a(t)] = é0)- alt) + a0)-a(e)

a0 0] = o) x o)+t o
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Rotating Basis

It is often convenient to express position vectors as components in a
basis which rotates with time.

Let {e,, e,,e;} be a basis which rotates with instantaneous angular
velocity Q2. Then,

de, =Qxey, = xe,, dey
dt dt dt

dez = () x €4
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Gradient of a Vector Field

Let v be a vector field in three dimensional space. The gradient of vis a
tensor field denoted by grad(v) or Vv, and is defined so that
. Wr+ea)—v(r
(V)-a = lim ( ) =)
0
for every position r in space and for every vector Q..

Let {e1, e, e3} be a Cartesian basis with origin O in three dimensional space. Let

= xlel +)C2€2 +X3€3 denote the position vector of a point in space. The
gradient of v in this basis is given by ov;  Ov, 0w

8x1 8x2 6x3
aVZ aV2 6\/2

Vv =
8x1 8x2 5)(?3
8V3 5\/3 5\/’3
i 8x1 6X2 8x3 |
ov;
[Vv]ij =

J
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Divergence of a Vector Field

Let v be a vector field in three dimensional space. The divergent of vis a
scalar field denoted by div(v) or Vv, and is defined so that

Formally, it is defined as trace[grad(v)].

_6\/1 @Vl 6\/1
5)61 6)62 8x3 n av.
Vy = Ovy  0Ovy 0V V-v=Tr(Vv):Z—’
8x1 0x2 0x3 lzlﬁxl
8V3 8V3 8V3

_axl ax2 8X3
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Curl of a Vector Field

Let v be a vector field in three dimensional space. The curl of vis a
vector field denoted by curl(v) or Vxv , and it is best defined in terms of
its components in a given basis.

r=X€ +)C2€2 +X3€3

Express v as a function of the components of r v = v(x,,x,,Xx53). The
curl of v in this base is then given by

¢ € &

VA 0 o) 0 _ 01/3 81/2 + 81/1 81/3 + 81/2 81/1

oy O Ovy \dv, o oy o )2 \ay oy

i V2 3
oV :

c J
[Vv]z = &jjk Gx—k

RF and Microwave Physics Fall 2002 ANL



advanced photon source )
The Divergence Theorem

Let V be a closed region in three / n
dimensional space, bounded by an
oreintable surface S. Let n denote the
unit vector normal to S, taken so that n
points out of V. Let u be a vector field
which is continuous and has

continuous first partial derivatives in
some domain containing T. Then

| div(u)dV = [u-ndA
V S

S

expressed in index notation:

iy = un
,’[axidV_gulnldA
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Definite Integral -- Properties

b b b

M () +g))dx = | f(x)dx + [ g(x)dx
: y “

@) [af (x)dx = af f(x)dx
Z c ) b

Gi) | f(x)dx = [ f(x)dx + | f(x)dx

a b
(V) [ f(x)dx == f(x)d
b a
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| f(x)g(x)dx =2
(u(x)v(x))’ =u'(x)v(x)+u(x)v'(x)
u(x)v(x) = ju'(x)v(x)dx + fu(x)v’(x)dx

<

u=f(x)

L dv = g(x)dx

—

Integrals

du = f'(x)dx

V= j a(x)dx

RF and Microwave Physics Fall 2002 ANL
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Integrals

1
j xZe*dx
Examples
u = x2 After integration and du=2xdx
gy ex differentiation, we get v = ex
1 _
(u=x du = dx
2
jx e*dx = x’e” Ierxdx 3 =
0 dv=e"dx y=e"
1 X X 1 X 1
jxe dx=xe"| —e
0 0 i
0
2 X
1 | | | j x‘edec=e—-2
m— j Y’ dx=x%e"| —2xe"| +2¢
0 0 0

0
RF and Microwave Physics Fall 2002 ANL
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Integrals

_[ xtan ! (x)dx

Evaluate
” 1
_ -1 du = d.
{u—tan (x) o R
dv = xdx |
vV =—X
\ 2
| 1 | x*
xtan ' (x)dx = —x” tan " (x dx
| (x)dx = — (x) - j2 e
X2 2
j S dx = jx +121dx=_[(1— : 2ja’x:x—tan1(x)+C
1+ x? 1+ x 1+ x
1 1 2 | 1
j xtan  (x)dx = — 2 tan (x)—5+5tan (x)+C
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Integrals — trig substitution

Evaluate jx3\/4 — xzdx
set x =2sin(t) = dx = 2cos(t)dx

[x'\4—xdx = [8sin’(¢)/4 —4sin’ (t)2 cos(t)dt
[x'\/4 —x’dx =32sin’ (t)cos’ (t)dt

: sin’(¢)cos”(¢)dt = j (1—cos’(¢))cos”(¢)sin(¢)dt
v =cos(t) = dv = —sin(t)dt

3 5

[(1=cos’(£)) cos’ () sin(r)dr = —[ (1 - v*)v'dv = —‘% 4 "? L C

J‘xamdx:_32%+32%+cz_4(4—x) +(4—x) N

3 5
RF and Microwave Physics Fall 2002 ANL
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Matrices

,
djp dip i3 a14\

Consider J: Cl21 a22 a23 6124

\d31 d3p d33 U3y

J s 3x4 matrix composed of 3 rows and 4 columns.

When the numbers of rows and columns are equal, the matrix is called a square
matrix. A square matrix of order n is an (nxn) matrix.
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Matrices operation

Vector, pz[a b C d] is a 1x4 row matrix.

k

Vector, q T is adx1 column matrix.

/
m
_n_
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Matrices operation

1. Addition | o« B b
consider P = and O = :
HT ¢ d_
then7 = P+ Q1s a 2 x 2 matrix with :
VU
Iy Iy
a+a P+b]
T = P
ut+c y+d |
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If A is a constant then,

A

s

,
1_

1
0

Matrices operation

SR

IS2x 2 identity matrix
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Matrices operation

aad +bf +cv
da+eff + fv

—
2x1
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Matrices operation

An n x n matrix A is called invertible iif there exists an n x n matrix B such that

AB=BA=1,
2 3 -1 3/2
A= and B =
MR
1 O
AB = BA = =1,
0 1

notation AA'=A47'4 = [, (A1s anxn matrix)

(A1) = 4 (4B) ' = B4
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Matrices operation

Let A be a n x m matrix defined by OL:., then the transpose of A,

ij’
denoted ATis the m x n matrix defined by 5ij where Sij= Oly; -

1. (X+Y)T=XT+YT
2. (XY)T=YTXT
3. (XN)=X

RF and Microwave Physics Fall 2002 ANL
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Matrices operation

Consider a square matrix A and define the sequence of matrices

1 1 1 1
A =1 +—A+—A"+— A +.. +—A4"
1! 2! 3! n!
as n — oo,
1 1 1 1
T 4—A+—A*+—A +. . +—A"+
I! 2! 3! n!

one can write this in series notation as

RF and Microwave Physics Fall 2002 ANL
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Matrices operation

Determinants

a b
Consider the matrix A= p . Ais invertible if and only if ad—bc#0
C
This number is called the determinant of A.
a b a b a b
Determinantof | , ; = det o d = o d =ad —bc.
Properties:
r la bl |la 0 a b c d
det 4 =det 4", = =ad , =—
d b d c d a b
Aa Ab b b
AT T2l 7 det(4B) = det(4)det(B)
c d c d| |Ac d

RF and Microwave Physics Fall 2002 ANL



advanced photon source . .
Matrices operation

In general,

j=n
det(A) — Z al]Al] for any fixed i
=1

i=n
det (A) = Z ai]- Aij for any fixed j
i=1

a b c P i f y

d e f:ae —b +c ©
h k g k g h

g h k
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Eigenvalues and Eigenvectors

Let A be a square matrix. A non-zero vector C is called an
eigenvector of A iff 4 a number (real or complex) 3 53 4C = AC

If A exists, it is called an eigenvalue of A.

(1 2 1)
A= 6 -1 0
-1 -2 -1
AC, =0C,, AC, = -4C,,and AC; =3C,
(1 ) (—1) (2
where C;=| 6 |,C,=| 2 |,and C;=| 3
—13) y \~2)
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Computing eigenvalues

AC = AC
Al ,C=,C = Al ,C—Al,C =0
(41, —AI,)C=0 =(4-A,)C =0

This is a linear system for which the matrix coefficientis 4 — ﬂ,]n :

This system has one solution if and only if the matrix coefficient is
invertible,l.e. det(A-AI,)#0

Since the zero-vector is a solution and C is not the zero vector, we must
have

det(A -1, )=0
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Computing eigenvalues

Consider matrix A:

)
A:( jwmwmﬂugzo
2 0

1-4 =2
= =1-A)0-1)-4=0
o = U=AN0=2)
which is equivalent to the quadratic equation

A -A-4=0

1+\/ﬁ
2

,and A =

solutions : 1 =

1-4/17
2
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Computing eigenvalues

det(A— A1, )= det(d- A1, =det(4” - i1,
for any sq uare matri x of order 2, A = La Zj,
c

the charac teristic p olynomial is given by
a—A b

C d—A1
= > —(a+b)1+ad —bc =0.
The number (a + b) 1s called the trace of A (denoted tr(A)) ,
and (ad - bc) is the Determinant of A. 4> —t{(A)A+det(4) =0.

—(@a—A)d—-A)—bc=0

RF and Microwave Physics Fall 2002 ANL
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Complex Variables

Standard notation:  ~» = yx 4 ly — e’

x,v,r,and 6 arereal, i’ =—1

where , .
and e’ =cos@ +isin@

xand y are the real (Re z) and imaginary (Im z) part of z, respectively.

— ‘Z‘ is the magnitude, and | @ is the phase or argument arg z.

Im 7

0

<
I
I
I
I
I
I

X Re 7
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Complex Variables

The complex conjugate of z is denoted by z'; z'=x-iy.

A function W(z) of the complex variable z is itself a complex number
whose real and imaginary parts U and V depend on the position of z in
the xy-plane. W(z) = U(x,y) + iV(x,y).

W(z)=z =(x+iy) =x —y +2ixy
U=x"—-y V=2xy

or W=z =re

RF and Microwave Physics Fall 2002 ANL
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Complex Functions

1. Exponential

exp(z)=e” with z=x+iy

exp(z) = e (cos y +isin y)
d

Eexp(z) =exp(z)

if z=x+1iy and w=u+iv, then

exp(z +w) = e U [cos(y +v)+ism(y+ y)]
=Xt [cos Y C€osVv—sin ysin v+ i(sin y cosv+ cos ysin v)]
= e* e (cos y +isin y)(cos v +isinv)

= exp(z) exp(w)
RF and Microwave Physics Fall 2002 ANL
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Complex Functions

Circuit problem E
> Ve = RI
/ L e L _, di
% R L dt
av
- C Z—
‘e dt

V(t)= Asin(wt+ @) = V = Im( 4de'?e'®) = Im( Be'”")
[ = Im(Ce'™")

iAeiwt =iwAe'”. if 1=be'”,
dt
1

=V =iwlLl (forinductor)and iwVC=1,orV = v for a capacitor.
I
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Kirchoff’'s law:

oLl + ——— 1+ RI = ae ' (E :a"“”)
ioC
. b
iolb + + Rb = a
iowC
= b = 2 7
R+i[a)L— )
o C
u ol — !
b = e'? tan ¢ = o C

\/ 1 2 | R
R2+(a)L— j
w C

I = Im( be '“") = Im a4 pil@itd)

1 2
R2+£a)L—)
o C
a

= 2sin( ot + @)

Jre (o 2]

I\
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Differential Equations

18t order DE has the following

form:
d
o+ P(x)y =q()
X
The general solution is given by — ju(x)q(x) +C

>

u(x)
u(x) = exp(J p(x)dx)

U(x) is called the integrating factor.
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v Differential Equations

Example 1

Find the particular solution of )/ +tan(x)y = cos*(x), ¥(0)=2.

e step 1: identify p(x) and q(x).
p(x)=tan(x) and q(x)=cos’(x)

e step 2: Evaluate the integrating factor

u(x) — ejtan(x)dx — e—ln(cos(x)) — eln(sec(x)) — Sec(x)
e \We have
j sec(x)cos (x)dx = j cos(x)dx = sin(x)
p = SOFC G0+ C)cos(x), 1(0)=C =2
sec(x)

y = (sin(x) + 2) cos(x)
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v Differential Equations

Example 2

Find solution tp

cos’(¢)sin(t)y' =—cos’(t)y+1, y(z/4)=
Rewrite the equation:

, cos’ (1) 1 cos(?) 1

= oyt =yt ;
cos’(?)sin(z)”  cos’(¢)sin(z) sin(¢)©  cos’(¢)sin(¢)

Y cos(f) 1

: Y= :
sin(?) cos’ (¢)sin(?)
Hence the integration factor is given by

cos( ¢ )

ol : .
u(t) =e 0 g0l sin( ¢)
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v Differential Equations

Example 2
The general solution can be obtained as
. 1
[sin(t)—5———dt+C
)= cos (¢)sin(z)
sin(?)
Since we have
. 1
sin(?) ——dt = dt = tan(z),
j cos’(¢)sin(?) I cos’ (¢)
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advanced photon source . . .
v Differential Equations

Example 2

We get

:tan(t)+C_ 1 N C

() cos(r) sin(n) et F Ceseli)

72- —_—
The initial condition y(z) =0 implies

V2+C2=0,=C=-1

y(t) =sec(t)—csc(t)
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Separation of Variables-PDE

This method can be applied to partial differential equations,
especially with constant coefficients in the equation. Consider one-

dim wave equation:

Zt’;‘ =c’ 2 ’f , u(x,t) s the displacement (deflection) of the stretched string.
X
u(0,1)=0 u(L,t)=0 V¢ (BCy) i/\ J
N /
u(x,0)= f(x) and 5(x, 0F9(x) acs X=0 XL
Basic idea:

1.  Apply the method of separation to obtain two ordinary DE’s
2. Determine the solutions that satisfy the bc's.

3. Use Fourier series to superimpose the solutions to get final
solution that satisfies both the wave equation and the initial

conditions.
RF and Microwave Physics Fall 2002 ANL
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v ‘Seepqratlon of Variables-PDE

We seek a solution of the form
u(x,t)=X(x)T(2)

Differentiating, we get

Ou : 0 ( Ou 0’u -
- =Xt = 5(5) = -5 = X(O)T@)

and

ou , %) ou _ azu _ "
= XWTH = ax(ax)— S - X (DT

Thus the wave equation becomes
1

X" (0)T(r) = C—zX(X)T(t),
dividing by the product X(x)T(¢)
X" T
X T RF and Microwave Physics Fall 2002 ANL
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Separation of Variables-PDE

X" T

— =——=constant =¢
X c’T

X"=¢X

T=cT

We allow the constant to take any value and then show that only certain
values are allowed to satisfy the boundary conditions. We consider the

three possible cases for ¢, namely C:p2 positive, C=0,and C‘:—pz.
These give us three distinct types of solution that are restricted by the
Initial and boundary conditions.

X"=0 = X(x)=Ax+B
T=0 =T(t)=Dt+E

With C=0

RF and Microwave Physics Fall 2002 ANL



advanced photon source

Separation of Variables-PDE

c=p’
X”—p2X — O
T—czpzT =0

X(x)=e™, = X'"(x)= 2™ = 1 X(x)
/12X—p2X:O, :>/12:p2 = A=*p

Solution:
X(x)=Aet* + Be ¥

BC’s 1n x=>A=0, B=0. Trivial solution

RF and Microwave Physics Fall 2002 ANL



advanced photon source

Separation of Variables-PDE
C=— p2
X"+ p*X =0
T+c? pzT =0
X(x) = ™
where A% = —p2 —> A=+ip
Thusthe solutionis  X(x) = Acos px+ Bsin px
BCatx=0=4=0, atx=L X(L)=Bsin pL
if B =0, we havethe trivial solution.Non- trivial solution=>sin pL =0
= pL =nm, nisaninteger.

RF and Microwave Physics Fall 2002 ANL



advanced photon source

Separation of Variables-PDE

Similarly;

T(¢) = D cos pct + E sin pct
p =nx/L. Thus, a solution for u(x,t) is

u(x,t) = Asmmx(D cosmt+Esmmtj
L L L

u(x,r) = Zsmx(D cos@tJrE sinmt)
L L L

We can set A=1 without any loss of generality.
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advanced photon source

Separation of Vqriables-PDE

. nTm
Applying IC’s. Setting t=0.  u(x,0) = Z D, sin —~ ¥

n=1
since sin(0) =0 and cos(0) =1,

ni

f(x)= ngn sin Tx

To determine the constants, D, we multiply both sides of the equation

by sin”* , and integrate from x=0 to x=L.

j f(x) smedx | [ > D, sin xsinn%r xja’x

0\n=1
OO L ni mir
j f(x) s1n—xdx _[ D, sin— xsin—x |dx
L g L L
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advanced photon source
Separation of Variables-PDE
Usmg orthogonality condition:

L

xX)sin T xdx = —.

j f()sin="xdx = Dy, -
Replacmng by n:

—jf(x) sin Txdx
the other IC requires the time derivative of u(x,t).
Z—L; = nzlnLﬂsin mﬂx(E cos nLﬂt — D, sin nLﬂCtj
att =0,
> NTIC . nrw

6;—t‘l(x,O) = > E, sin - X

n=1
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advanced photon source

Separation of Variables-PDE

using IC,

o(x) = Z@E sin%x

Repeat the same procedure

mc L
X sm—xdx——E
Ig( ) T En
2 ni
= F, :—jg(x)sm—xdx
nic L
niw nic
u(x,t sin— x(D, cos—t+E SiIn——t¢
(x)=3 Dy cos— st

n=I
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advanced photon source ) )
Fourier series

A+ (4 cos(nx)+ B, sin(nx)).
n=1

A Fourier polynomial is an expression of the form

F (x)=a, + (a,cos(x) + b, sin(x)) +...+ (a, cos(nx) + b, sin(nx))
Which may be written as

F =a,+ > (a, cos(kx)+ b, sin(kx)).
k=1
The constants

F,(x).

dy,d; and b,-,i =1,...,n, are called the coefficients of

RF and Microwave Physics Fall 2002 ANL



advanced photon source . .
Fourier series

The Fourier polynomials are 2 n-periodic functions.

F =a,+ Zn: (a, cos(kx)+ b, sin(kx)).
k=1
1 ¢
a,=—/\| F, (x)dx,
° o J“” ()
a, = % [* F,(x)cos(kx)dx,1 <k <n

b, = % [* F,(x)sin(kx)dx, 1<k <n

RF and Microwave Physics Fall 2002
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advanced photon source . .
Fourier series

Example
Find the Fourier series of the function f(x) =x, —T<x<T.

Since f(x) isodd then @ =0, forn>0. Forany p>1,

we have

b, = L r x sin(x)dx = 1 [_ X cos(rx) N Sln(nx)}
T B

T n n’
=b = —gcos(mz) = 2(—1)"’“.
n n
Hence f(x)~ Z(Sin(x) — sm(22x) + sm(33x ) j

RF and Microwave Physics Fall 2002 ANL



advanced photon source . .
Fourier series

Find the Fourier series of the function with period 2L defined by Example

-

1 —L<t<0

_1—1 O<t<l <

Fourier series given by

() ~ ‘3) +3a_ cos(uax)+bnsin(uax)

=

RF and Microwave Physics Fall 2002 ANL



advanced photon source . .
Fourier series

Coefficients found by evaluating

) T/2 ) T/2
ay, =—N\f (@)cos(nwt)dt, b, =— | f (¢)sin( nwt)dt
Fd_rn Fd_rn

Calculating

nt

N T/2
a, :?"‘f (t)cos(nawt)dt = f(2) COS(Tjdt

L
LI
_7/2 Ll
[ 0 L |
= i< j cos[ﬂjdt + J- [1 — LJ cos[ﬂjdt
L 7 L 0 L L

\ J

~N

-

0 L oL \
L . nnt t |\ L . (nn 1 L . ( nm
— S| —— +|| ] —— |—sIin| — + ———sin| — |dt
k nr L 7 L )nrx L 0 0 L nrx L
RF and Microwave Physics Fall 2002 ANL
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advanced PhOTOM Source . R
Fourier series

1 g it
a, = sin| —— |dt
nlL L
0
- L
1 L n it
= — ——CO0S
nl nrw L
N 10
_l-cos(nz) 1-(-1)"

n’r? n’r?
o 2
“a, =0 if niseven, a, = > 2zfnlsodd,
n°rw
2
:>a2m209 Ao2m+l = 2 9
Cm+D)x

RF and Microwave Physics Fall 2002 ANL



advanced photon source . .
Fourier series

o T/2 1 L
Calculate a, ag=—1\ f(t)dt = —If(t)dt
I'J_7/ LJ g
1 4 O L t 3
:—<J‘ldt+j 1 ——dt ;
L |J_t 0 L
4 _ _L\
| 0 t2
=—<tl;, +|t——1 ¢
Al Ry
L B _O)
ul 2
= — L+L——>:i
L 2L
do :3/2
RF and Microwave Physics Fall 2002 ANL



advanced photon source

Calculating b,

' J 7/

-
\
-

“

cos(nr)—1 1 IIL (nm‘
= + — COST 4

ni nrx nual 0

n L n
D" 1 {L Sin(mﬂ (D
nw nal | nrx L niw

0

RF and Microwave Physics

Fourier series

0 14 L t V14
J‘ sin[n—jdt+ j (1——]Sin(n—]dt
7 L 0 L L
0
1 L nut t | L
= —{| ———cos — —||1—— |—cos
L { nr ( L j:lL H Ljniz

> (712 L[ nat
b,=—1f @)sm(nwt)dt= —J‘ JAO) sin[—jdt
L), L

L

nt LlL
OLmz

0

Fall 2002
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advanced photon source . .
Fourier series

We now know that

2
a, =0, Ay, .| = n=123,...
2 L n+1)n?

3
b = - n=123,..

ni

3 % 2 Cun+hm) ~ )" . (nm
[)~—+ COS + SIn| ——
Ul 4 ’121:(2n+1)27z2 ( L j — Nz ( L j
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advanced photon source .
Fourier transform

The continuous time Fourier transform of x(¢) is defined as

2(N) =[xt

and the inverse transform is defined as

x(t)=[" x(f)e*"df

A common notation is to define the Fourier transform in terms of L
as

X(iw)= j_°° x(H)e ' dt,
x(t) = — j X(iw)e'dw
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advanced photon source

Fourier transform properties symmetry

() =] x(e *™di
2N =" (x, () +x, (D))(cos( 2aft) — isin( 2aft) .

The odd components of the integrand contribute zero to the integral.
Hence

() =" x ()cos(2aft)+i[ —x,(t)sin(2xft)dt,
() =x.(H)+ix;(f)

where x.(f)= j_oooo x,(t) cos(2aft)dt,
2:(f) == x,(t)sinQ2rfi)dt.
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Odd and Even Functions

Even Odd
S =f(@) S ==f(-1)
Symmetric Anti-symmetric ' Ly
-T2 -t o t Tn
Cosines Sines

Transform is real’ Transform is A

imaginary

*for real-valued signals < 'T/Z 't /\/V

e Important property of even and odd
functions for any L,

jf(t)dt = 2jf(t)dz Iffis even

L
[ rwa=o Iffis odd
L RF and Microwave Physics Fall 2002  ANL
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5w Convolution Theorem

Let F, G, H denote the Fourier Transforms of signals f, g, and h
respectively.

g=Fh g=fh
implies implies
G=FH G = F*H

Convolution in one domain is multiplication in the other and vice versa.
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advanced photon source

SCf(t)* g (1)

SCf () * g(r) =

Convolution

_ S(j F(t-t)g(r)dr)

e OO e OO '2
f(t—r)g(r)dre_l o 1 g
oJ — OO0 ¢

e OO )

o0 5
f(t-7)g(r)e '="@ Ld rdt
00)

o — 00 ¢ —

e OO

f(t—r)g(rk_l 0 T g gy
o0

o — OO0 ¢ —

e OO e OO

f(u)g(r)e_izﬁa) (u+r)drdu
( ( f(u)e_izﬂa) ug(r)e—i27m)r d 7 du
.f(u)e_i27m) “duJ-O;(r)e_iz”wT dr
S(f () g (1) = j ftyei27 g j g (1)e 1270 14
I(f() 3(g ()
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advanced PhOI’OH Source .
Convolution

S(f(@)*g(2) =3(f(1)3(g())
(D) =T(f£ (1) *3I(g(r))
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